
A SIMPLE IAMBIC KEYER

Andy Palm N1KSN, March 2009

This project is based on the keyer circuit of amateur radio operator

EI9GQ as found in http://homepage.eircom.net/~ei9gq. What is unique

and intriguing about this circuit is that the code speed is controlled

by varying the frequency of an external RC clock circuit driving the

microcontroller chip. Usually the MCU has a fixed frequency

oscillator and speed changes are made in software. This approach

restricts keyer functionality, but greatly simplifies the software.

The original circuit used the PIC16F84, but I decided to use the

smaller PIC12F675, an 8-pin chip. An even less expensive model could

be used, as the software does not make use of the chip’s peripherals.

Also, the program from the website above did not work very well, so I

substituted my own main routine, keeping a modified version of the

delay subroutine of EI9GQ. I wrote the program in assembly language

to guarantee speed of execution and so I could experiment with the PIC

power reduction command SLEEP.

The schematic diagram is in Figure 1 below. The 50K pot and 27K fixed

resistor together with the 39 pf capacitor form the RC circuit for the

oscillator. As the pot resistance is decreased, the oscillator

frequency, given by freq = 1/RC , increases which in turn increases

the code sending speed. The resistance and capacitance values were

chosen to give a WPM range of approximately 13 to 35 WPM. Details of

the timing calculations are in the delay subroutine comments in the

code listing. Breadboard empirical adjustments to the component

values were necessary, but the calculations got me close.

In an attempt to reduce power draw when the MCU is sleeping, I used

internal pull-ups on the two paddle input pins. If you are concerned

about high noise on the paddle lines, you can substitute external 10K

pull-up resistors (and change the program code accordingly), but this

may increase power draw. The output circuit is an NPN switching

transistor.

I chose to power the unit with three AAA cells giving about 4.5 volts.

The current draw of the circuit is very low, so they should last for a

long time. I used a separate on/off switch rather than one attached

to the speed control so I could keep the speed setting between

operating sessions. Although the speed control isn’t calibrated, it’s

pretty easy to find the right speed with a few dits.

Figure 1. Schematic diagram of Simple Keyer.

The next two pages contain the program listing. Some simple #define

statements for particular register bits are used to make the code a

bit more readable. The variable Buffer contains two flags which

indicate if a closure has been detected on the dit or dah paddle.

To wake up from the SLEEP command when a paddle is pressed, one must

set up the input pin interrupt-on-change feature. This requires

setting bits in the IOC register and enabling peripheral interrupts

with GPIE set in INTCON. However, the overall interrupt enable bit

GIE must not be set to avoid jumping to the interrupt address upon

waking.

Note the additional (opposite) paddle read while a dit or dah is being

sent. This is necessary to get smooth operation of the keyer.

 title "asmKeyer - Very simple iambic keyer"
;==
; This project is based on the keyer circuit of amateur radio
; operator EI9GQ as found in http://homepage.eircom.net/~ei9gq.
; The code speed is controlled by varying the resistance in an
; external RC oscillator attached to GP5. However, only modified
; delay subroutine code from EI9GQ is used, the rest being different.
; Also, the PIC12F675 is used instead of the PIC16F84.
;

; Hardware Notes:
;
; PIC12F675 running on external variable RC oscillator attached
; to GP5. External oscillator component values are C = 39 pf,
; R fixed = 27K, R variable 50K. These values, plus the
; loop count values in the delay subroutine give a useable range
; of words per minute (WPM). See comments in delay routine below.
;
; Keyed output is GP0, Pin 7, pulled down by 100K resistor, then
; to base of keying NPN transistor through 10K resistor. Output
; to transmitter is collector of transistor.
;
; Dit paddle input is GP1, Pin 6, with internal pullup.
; Dah paddle input is GP2, Pin 5, with internal pullup.
;
; Andrew Palm
; 2009.03.31

;==
;------------ Defines, Includes, and Configuration Word ---------------

 #define OUTPUT GPIO, 0 ; Keyed output to transmitter
 #define DIT_IN GPIO, 1 ; Dit paddle input
 #define DAH_IN GPIO, 2 ; Dah paddle input
 #define DIT_BUFFER Buffers, 0 ; = 1 if dit paddle pressed
 #define DAH_BUFFER Buffers, 1 ; = 1 if dah paddle pressed

 LIST R=DEC
 INCLUDE "p12f675.inc"
 ERRORLEVEL -302, -305

 __CONFIG _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_OFF & _PWRTE_ON & _EXTRC_OSC_NOCLKOUT

;--------------------- Variables --------------------------------------

 CBLOCK 0x20
 HCount, LCount ; Counters for dit delay
 Buffers ; Buffers for paddle inputs
 ENDC

;----------------------- Main ---
 ORG 0x00
 nop ; For ICD Debug

; Initialize
 clrf GPIO ; Initialize I/O bits to off
 movlw 7 ; Turn off comparators
 movwf CMCON
 bsf STATUS, RP0 ; Bank 1
 clrf ANSEL ; All bits are digital
 movlw b'111110' ; Only GP0 an output
 movwf TRISIO

 movlw b'000110'
 movwf WPU ; Weak pullups on inputs
 bcf OPTION_REG, 7 ; Enable weak pullups
 movwf IOC ; Interrupt on GPIO input change
 movlw b'00001000' ; Enable peripheral interrupts (GPIE)
 movwf INTCON ; but NOT overall interrupt (GIE)
 bcf STATUS, RP0 ; Bank 0

 clrf Buffers ; Clear paddle input buffers

Loop: ; Main loop
 sleep ; Sleep, awake on paddle input
 btfss DIT_IN ; Is dit paddle pressed (=0)?

 bsf DIT_BUFFER ; Yes, set dit buffer
 btfss DAH_IN ; Is dah paddle pressed (=0)?
 bsf DAH_BUFFER ; Yes, set dah buffer

 btfss DIT_BUFFER ; Send dit if dit buffer = 1
 goto Loop2
 bcf DIT_BUFFER ; Clear dit buffer
 bsf OUTPUT ; Key output
 call Delay_dit ; Wait for length of dit

 bcf OUTPUT ; Unkey output
 btfss DAH_IN ; Is dah paddle pressed (=0)?
 bsf DAH_BUFFER ; Yes, set dah buffer
 call Delay_dit ; Wait for length of dit

Loop2:
 sleep ; Sleep, awake on paddle input
 btfss DIT_IN ; Is dit paddle pressed (=0)?
 bsf DIT_BUFFER ; Yes, set dit buffer
 btfss DAH_IN ; Is dah paddle pressed (=0)?
 bsf DAH_BUFFER ; Yes, set dah buffer

 btfss DAH_BUFFER ; Send dah if dah buffer = 1
 goto Loop
 bcf DAH_BUFFER ; Clear dah buffer
 bsf OUTPUT ; Key output
 call Delay_dah ; Wait for length of dah

 bcf OUTPUT ; Unkey output
 btfss DIT_IN ; Is dit paddle pressed (=0)?
 bsf DIT_BUFFER ; Yes, set dit buffer
 call Delay_dit ; Wait for length of dit
 goto Loop

;------------------- Subroutines --------------------------------------
; Delay loop for dahs and dits
; Delay clock ticks for a dit is approximately given by:
; 12 clock ticks per inner loop x 200 interations inner loop
; x 10 interations outer loop = 24,000 clock ticks per dit
; The clock frequency should then be:
; freq = ticks per sec = (24000 ticks per dit) /
; [(1.2 / WPM) sec per dit]
; = 20000 x WPM
; Thus:

; With R = 77 Kohm, C = 39 pf, f = 1/RC = 333 KHz, WPM = 16.7.
; With R = 27 Kohm, C = 39 pf, f = 1/RC = 950 KHz, WPM = 47.5.
;
; These are approximate starting values for empirical determination.
; When used, range of code speed was actually more like 10 to 40.
;
 #define DAH_HCOUNT 0x1E ; Outer loop count for dah = 30
 #define DIT_HCOUNT 0x0A ; Outer loop count for dit = 10
 #define LOW_COUNT 0xC8 ; Inner loop count = 200
Delay_dah:
 movlw DAH_HCOUNT
 goto $ + 2
Delay_dit:
 movlw DIT_HCOUNT
 movwf HCount ; Counter for outer (high) loop
 movlw LOW_COUNT
 movwf LCount ; Counter for inner (low) loop

 decfsz LCount ; Inner loop 3 ops = 12 clock ticks
 goto $ - 1
 decfsz HCount
 goto $ - 5
 return

 END

