
A TINY IAMBIC KEYER REVISITED

Andy Palm N1KSN, April 2009

This project is a software re-work of a small iambic keyer that I

built and installed in a small homebrew crystal-controlled QRPp

transceiver for 3.560 MHz. The original software was written in C and

included three recorded messages “hardwired” into the code. A single

pushbutton was used to play the messages or change code speed in

conjunction with the paddles. A PIC12F675 was used.

After successfully building a simple keyer programmed in PIC assembly

language that felt very smooth in operation, I decided to re-work the

old keyer’s software. To keep things simple, I eliminated the

recorded messages but retained the sending speed adjustment feature

with the pushbutton. I also kept the straight key feature. If a mono

plug is in the key jack (or if the dah paddle contact is closed) on

power-up, then the keyer simply passes the straight key (or dit paddle

contact) closures through to the rig.

The basic iambic keying code was taken from the simple keyer project

mentioned above and the straight key and code speed change functions

from the older keyer were rewritten in assembly language. Since this

keyer has to run at a fixed oscillator speed (unlike the simple

keyer), the dit delay routine was also rewritten to use a variable dit

delay time in milliseconds and sending speed is changed in software.

When the pushbutton is held down, the dit paddle increases the Words

per Minute (WPM) sending speed and the dah paddle decreases the speed.

Once the new speed is selected, the corresponding dit delay time is

looked up in a table. The table entries are derived from the formula

 Dit delay time (ms) = 1200 / WPM

The table entries are approximate due to the need to round them to

whole numbers.

Since this project was a pin-to-pin replacement for the older keyer,

the software was set up to use the pre-existing external pull-ups on

the paddle and button input pins. However, the sleep features of the

simple keyer were retained to help conserve some (perhaps very little)

power. The schematic diagram is in Figure 1 below. This circuit

could also be used for a very compact stand-alone keyer.

The new keyer works quite smoothly and I don’t miss the message

feature which I hardly used anyway.

Figure 1. Schematic diagram of Tiny Keyer 2.

The next three pages contain the program listing. Items of note are

the method of doing a simple table lookup for the dit delay time (in

milliseconds) for the current WPM sending speed and the dit delay loop

routine. Also note the code for using the PIC12F675 factory

calibration value for the internal RC clock. If internal weak pull-

ups are used instead of the external pull-ups shown in Fig. 1, two

lines in the initialization section should be “uncommented.”

 title "asmTinyKeyer2 - Tiny keyer with single button speed control"
;==
; This keyer is primarily for installation in a transceiver. It uses
; a pushbutton together with the paddles to made allow speed
; adjustments. When the button is held down the dit paddle increases
; sending speed, the dah paddle decreases speed.
;
; If the ring (dah) contact is grounded on power-up, the program
; functions in straight key mode, the tip (dit) contact being the

; straight key input.
;
; This version uses external pullups since its target application
; is an existing installation. If weak pullups are used for the
; inputs there may be better power savings under the sleep command.
;
; Hardware Notes:
;
; PIC12F675 running on 4 MHz internal RC oscillator.
;
; Keyed output is GP4, Pin 3.
; Dit paddle input is GP3, Pin 4, with external pullup.
; Dah paddle input is GP2, Pin 5, with external pullup.
; Speed control button input is GP0, Pin 7, with external pullup.
;
; Andrew Palm
; 2009.04.03

;==
;------------ Defines, Includes, and Configuration Word ---------------

 #define OUTPUT GPIO, 4 ; Keyed output to transmitter
 #define BUTTON GPIO, 0 ; Speed control button, = 1 if pressed
 #define DIT_IN GPIO, 3 ; Dit paddle input
 #define DAH_IN GPIO, 2 ; Dah paddle input

 #define DIT_BUFFER Buffers, 0 ; = 1 if dit paddle pressed
 #define DAH_BUFFER Buffers, 1 ; = 1 if dah paddle pressed

; These values must be consistent with Dit_ms_Table below
 #define DIT_MS_INIT 60 ; Default dit high loop count (ms)
 #define WPM_INIT 20 ; Default words per minute

 LIST R=DEC

 INCLUDE "p12f675.inc"
 ERRORLEVEL -302, -305

 __CONFIG _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_OFF & _PWRTE_ON & _INTRC_OSC_NOCLKOUT

;--------------------- Variables --------------------------------------
 CBLOCK 0x20
 HCount, LCount ; Counters for delay loops
 Dit_ms ; Upper delay loop value for dit delay
 Wpm ; Words per minute sending speed
 Buffers ; Buffers for paddle inputs
 ENDC

;----------------------- Main ---
 ORG 0x00
 nop ; For ICD Debug

; Calibrate internal clock
 call 0x3FF ; Retrieve factory calibration value
 bsf STATUS, RP0 ; Set file register bank to 1
 movwf OSCCAL ; Update register with factory cal value
 bcf STATUS, RP0 ; Set file register bank to 0

; Initialize
 clrf GPIO ; Initialize I/O bits to off

 movlw 7 ; Turn off comparators
 movwf CMCON
 bsf STATUS, RP0 ; Bank 1
 clrf ANSEL ; All bits are digital
 movlw b'101111' ; Only GP4 an output
 movwf TRISIO

 movlw b'001101' ; Interrupt on GPIO input change
 movwf IOC ; for both paddle and button inputs
 ; Uncomment two statements below if weak pullups are used
 ; movwf WPU ; Weak pullups on inputs
 ; bcf OPTION_REG, 7 ; Enable weak pullups
 movlw b'00001000' ; Enable peripheral interrupts (GPIE)
 movwf INTCON ; but NOT overall interrupt (GIE)
 bcf STATUS, RP0 ; Bank 0

 clrf Buffers ; Clear paddle input buffers
 movlw DIT_MS_INIT ; Initialize dit delay high loop count
 movwf Dit_ms
 movlw WPM_INIT ; Initialize Words per Minute sending speed
 movwf Wpm

 call StraightKey ; Check for closed dah contact on power-up
 ; for straight key mode

Loop: ; Main loop
 sleep ; Sleep, awake on paddle input
 btfss DIT_IN ; Is dit paddle pressed (=0)?
 bsf DIT_BUFFER ; Yes, set dit buffer
 btfss DAH_IN ; Is dah paddle pressed (=0)?
 bsf DAH_BUFFER ; Yes, set dah buffer

 btfss DIT_BUFFER ; Send dit if dit buffer = 1

 goto Loop2
 btfss BUTTON ; Check for button press
 call Incr_Speed ; If pressed, increment sending speed
 bcf DIT_BUFFER ; Clear dit buffer
 bsf OUTPUT ; Key output
 call Delay_dit ; Wait for length of dit
 bcf OUTPUT ; Unkey output
 btfss DAH_IN ; Is dah paddle pressed (=0)?
 bsf DAH_BUFFER ; Yes, set dah buffer
 call Delay_dit ; Wait for length of dit

Loop2:
 sleep ; Sleep, awake on paddle input
 btfss DIT_IN ; Is dit paddle pressed (=0)?
 bsf DIT_BUFFER ; Yes, set dit buffer
 btfss DAH_IN ; Is dah paddle pressed (=0)?

 bsf DAH_BUFFER ; Yes, set dah buffer

 btfss DAH_BUFFER ; Send dah if dah buffer = 1
 goto Loop
 btfss BUTTON ; Check for button press
 call Decr_Speed ; If pressed, decrement sending speed
 bcf DAH_BUFFER ; Clear dah buffer
 bsf OUTPUT ; Key output
 call Delay_dit ; Wait for length of dah
 call Delay_dit
 call Delay_dit
 bcf OUTPUT ; Unkey output
 btfss DIT_IN ; Is dit paddle pressed (=0)?
 bsf DIT_BUFFER ; Yes, set dit buffer
 call Delay_dit ; Wait for length of dit
 goto Loop

;------------------- Subroutines --------------------------------------
; Straightkey detection and operation
;
StraightKey:
 btfsc DAH_IN ; Is dah contact open on power-up?
 return ; Yes, return to main routine
SK_Loop: ; No, loop forever in straight key mode
 sleep
 btfsc DIT_IN ; Straight key (tip connection) closed?
 goto Unkey_Rig ; No
 bsf OUTPUT ; Yes, key transmitter
 goto SK_Loop
Unkey_Rig:
 bcf OUTPUT ; Unkey transmitter
 goto SK_Loop

;--
; Change sending speed between max and min limits and retrieve
; corresponding dit delay time (ms) from table
;
 #define WPM_MAX 30
 #define WPM_MIN 12
Incr_Speed:
 movlw WPM_MAX ; Is Wpm < WPM_MAX?

 subwf Wpm, w
 btfsc STATUS, C
 return ; No, return
 incf Wpm ; Yes, increment WPM
 goto Get_Dit_ms

Decr_Speed:
 movfw Wpm ; Is Wpm > WPM_MIN?
 sublw WPM_MIN
 btfsc STATUS, C
 return ; No, return
 decf Wpm ; Yes, decrement WPM

Get_Dit_ms: ; Get new dit delay time
 movlw WPM_MIN ; Calculate table offset
 subwf Wpm, w ; w = Wpm - WPM_MIN
 call Dit_ms_Table ; Look up new dit delay time in table

 movwf Dit_ms ; Store new dit delay time
 return

Dit_ms_Table: ; Dit delay time = 1200 / WPM
 addwf PCL, f ; Add offset to program counter
 dt 100 ; 12 WPM
 dt 92 ; 13 WPM
 dt 86 ; 14 WPM
 dt 80 ; 15 WPM
 dt 75 ; 16 WPM
 dt 71 ; 17 WPM
 dt 67 ; 18 WPM
 dt 63 ; 19 WPM
 dt 60 ; 20 WPM
 dt 57 ; 21 WPM
 dt 55 ; 22 WPM

 dt 52 ; 23 WPM
 dt 50 ; 24 WPM
 dt 48 ; 25 WPM
 dt 46 ; 26 WPM
 dt 44 ; 27 WPM
 dt 43 ; 28 WPM
 dt 41 ; 29 WPM
 dt 40 ; 30 WPM

;--
; Loops for dit delay time given by
; Delay = HCount * (5 us * (LOW_COUNT + 1))
; based on 4 MHz clock = 1 us per basic operation. Delays for Dit_ms
; milliseconds.
;
 #define LOW_COUNT 199 ; Inner loop count for Delay = HCount * 1 ms
Delay_dit:

 movfw Dit_ms
 movwf HCount ; Counter for outer (high) loop
 movlw LOW_COUNT
 movwf LCount ; Counter for inner (low) loop
 nop ; 1 us to give 5 us inner loop
 nop ; 1 us
 decfsz LCount ; 1 us
 goto $ - 3 ; 2 us
 decfsz HCount
 goto $ - 7
 return

 END

