
An 80 Meter Direct Conversion Receiver by Andy Palm N1KSN

Basic Receiver Kit:

Ten-Tec T-KIT No. 1056 CW-SSB Receiver. An “Any Band” NE612 direct

conversion design with all parts for choice of 160-10 meter ham bands,

plus variable bandpass & fine tuning controls. Covers the entire 80

meter band 3.5 to 4.0 MHz with the appropriately selected parts. $32.

Enclosure:

Ten-Tec TP-19 Enclosure. $6.45. Previously part of the Ten-Tec

Enclosure kit 1000-C (no longer available). You must supply mounting

hardware, connectors, speaker, etc., and drill all holes. After drying

from a wash with soap and water the case can be painted with Krylon or

similar paints in spray cans.

Optional Pre-Amp:

Ten-Tec T-KIT No. 1001, Universal Low-Noise Broadband DC to 1 GHz RF

Preamp. Added (with a cut-out switch) to allow the use of smaller

antennas with receiver. If you plan on using the receiver only with a

normal amateur antenna, a pre-amp isn’t needed. $11.

Optional Digital Frequency Readout:

Homebrew unit using Atmel AVR ATtiny2313 microcontoller, five small

multiplexed seven-segment displays, and a divide-by-ten prescaler. The

prescaler is based on a Steve Weber KD1JV circuit. This frequency

readout unit can be replaced with the Digital Dial kit (4 digit readout)

available from Hendricks QRP Kits at www.qrpkits.com (also designed by

KD1JV). This kit is $30.

If you search the Internet with “Ten Tec 1056” you will find YouTube and

other videos of this receiver in action. Unlike a regenerative receiver

of comparable complexity, a direct conversion receiver is not very good

for shortwave AM broadcasts due to the AM station’s carrier. However,

it works very well for CW and SSB reception.

This is a good beginner kit, as no toroidal inductors are used. The

basic kit’s printed circuit board has all pots and an audio output jack

mounted on it, so the rig could be used (with care) without an

enclosure. After viewing a couple of YouTube videos I decided to give

the kit the “full treatment.” Besides the optional modules above, I

added a muting circuit and jacks for muting and sidetone inputs. This

allows the receiver to be used with a transmitter in a ham station.

By replacing one of the microcontoller crystal’s caps with a trim cap, I

was able to tweak the chip’s speed to give a frequency readout accurate

to 20 Hz. I could have achieved 10 Hz accuracy, but only with a longer

one second count capture interval that makes tuning to a specific

frequency more difficult. A half-second capture interval works well as

a compromise. Unfortunately, the display circuit results in some hum in

the audio, but it is only noticeable if the RF gain is turned way down

or signals are very weak.

Schematic for Frequency Counter/Display

Schematic for Frequency Counter/Display

Note that the schematic in the Ten-Tec 1056 Kit instructions does not

coincide with the actual position of the T-R mute jumper on the circuit

board. The position of blocking capacitor C18 on the circuit board

should be modified to place the mute circuit between C18 and R18 (AF

gain pot) as shown in the instruction’s schematic.

;--
; asmFreqCounter4a.asm - Frequency counter with divide by 10 prescaler
; for direct conversion shortwave receiver
;
; Timer1 plus an additional byte form a 24-bit counter with Timer1
; counts externally triggered by pin T1. The Timer1 overflow ISR is
; used to increment the upper 8 bits.
;
; This version scales the count assuming an external prescaler divides
; the signal by 10. With a clock frequency of 16 MHz the counter
; is good for range of 0.45 to 72 MHz (before prescaling) using a
; one half second capture interval.
;
; Hardware:
; ATtiny2313 with 16.000 MHz crystal.
; One crystal cap is fixed 22 pf, the other is a 9 to 40 pf trim cap
; adjusted to calibrate the counter reading.
; Five 7-segment common anode LED displays with the segments a to g
; and decimal point lines wired in parallel. The display format
; is set as X.XXX.X, the last digit being the hundreds Hz digit.
;
; AVR pin assignments:
; PORTD0:4 - Anode lines of the five 7 segment displays,
; D0 = lowest digit
; PORTD5 - T1 pin for prescaler input
; PORTB0:7 - Segments a to g and decimal point of displays
;
; Notes: The code handles counts of up to 8 decimal digits but
; displays only the 5 digits needed for this application.
; For frequencies higher than 9.9999 MHz, an additional
; 10 MHz digit can be added and the spare PORTD6 pin used for
; its anode control (with suitable modifications to the code).
; Due to the divide-by-ten prescaler and 0.5 second capture
; interval, the resolution of this version is 20 Hz, so
; the display of the 10 Hz digit would not be very useful.
;
; If the receiver is to be used for CW only or is a superhet,
; then additional code can be included to add or substract an
; appropriate CW sidetone or intermediate frequency offset to
; the displayed frequency.
;
; If the code is used as a stand-along frequency counter, one
; can easily change to a one second capture interval by
; setting COUNT_IVL to 500 and eliminating the multiply by two
; code in the main loop.
;
; Andy Palm
; 2009.12.15
;
;--
;------------------ includes, defines, equates ------------------------
.nolist
.include "tn2313def.inc"
.list

.equ FREQ = 16000000 ; Clock frequency in Hz

.equ TICK_PRESCALE = 256 ; Tick timer prescaler value
.equ TICKS_PER_S = 500 ; Ticks per second for 2 ms
.equ TIMER0_START = 256 - (FREQ/(TICKS_PER_S*TICK_PRESCALE))

 ; Tick timer count

.equ COUNT_IVL = 250 ; Counter capture interval in ticks
 ; Equals TICKS_PER_S/2 for 0.5 sec
 ; count capture interval.
 ; Change to 500 for a 1 sec capture
 ; interval.

.equ MAX_DIGIT = 5 ; Max digit index for display
.equ MIN_DIGIT = 1 ; Min digit index for display

.equ DIG_ADDR = 2 ; Address of first digit register

; Register variables
.def tempa = r16
.def tempb = r17
.def dig_index = r18 ; Current digit to display
.def timer1_msb = r19 ; Most sig 8 bits for freq counter

.def remain_L = r20 ; Bottom 8 bits of division remainder
.def remain_M = r21 ; Middle 8 bits of division remainder
.def remain_H = r22 ; Top 8 bits of division remainder

.def count_tick = r24 ; Tick counter

.def freq_digit_0 = r2 ; Eight digits of frequency
.def freq_digit_1 = r3
.def freq_digit_2 = r4
.def freq_digit_3 = r5
.def freq_digit_4 = r6
.def freq_digit_5 = r7
.def freq_digit_6 = r8
.def freq_digit_7 = r9

.def count_L = r11 ; Bottom 8 bits of freq count
.def count_M = r12 ; Middle 8 bits of freq count
.def count_H = r13 ; Top 8 bits of freq count

;------------------ SRAM assignments ----------------------------------
.dseg
.org SRAM_START

;------------------ macros --
.macro Calc_Digit

; Divide 24-bit frequency count by power of ten 10^n to get digit
; for display. Used with series of successive calls only.
;
; Method of division taken from "Electrical Engineering 101" by
; Darren Ashby, 2006, Elsevier/Newnes, p. 122
;
; Call is
; Calc_Digit digit_reg, H, M, L
; where
; digit_reg = register to store digit
; H, M, L = High, mid, low bytes of divisor as constants

 clr @0 ; Clear registers for division by
 clr remain_L ; 10^n to get digit which is stored
 clr remain_M ; in freq_count_n

 clr remain_H
 ldi tempb, 24 ; Load counter with number of bits
Calc_Digit_A:
 lsl @0
 lsl count_L ; Rotate dividend left into remainder
 rol count_M
 rol count_H
 rol remain_L
 rol remain_M
 rol remain_H
 push remain_L ; Save copy of remainder
 push remain_M
 push remain_H
 subi remain_L, @3 ; Subtract divisor 10^n from remainder
 sbci remain_M, @2
 sbci remain_H, @1
 brsh Calc_Digit_B ; Compare remainder and divisor
 pop remain_H ; Remainder < divisor so restore
 pop remain_M ; remainder and do nothing else
 pop remain_L
 rjmp Calc_Digit_C
Calc_Digit_B:
 pop tempa ; Remainder >= divisor so discard
 pop tempa ; old remainder and keep new value
 pop tempa
 inc @0 ; Add one to result digit
Calc_Digit_C:
 dec tempb
 brne Calc_Digit_A ; Continue through all bits of dividend
 mov count_L, remain_L ; Remainder is dividend in next step
 mov count_M, remain_M
 mov count_H, remain_H

.endmacro

;------------------ interrupt vectors ---------------------------------
.cseg
.org 0x0000
 rjmp Reset ; Reset service
 reti ; INT0 external interrupt
 reti ; INT1 external interrupt
 reti ; TIMER1 CAPT capture event
 reti ; TIMER1 COMPA compare match A
 rjmp Timer1_OVF ; TIMER1 OVF overflow
 reti ; TIMER0 OVF overflow
 reti ; USART, RXC rx complete
 reti ; USART, UDRE data register empty
 reti ; USART, TXC tx complete
 reti ; ANA_COMP analog comparator
 reti ; PCINT pin change
 reti ; TIMER1 COMPB compare match B
 reti ; TIMER0 COMPA compare match A
 reti ; TIMER0 COMPB compare match B
 reti ; USI START USI start condition
 reti ; USI OVERFLOW USI overflow
 reti ; EE READY EEPROM ready
 reti ; WDT OVERFLOW Watchdog timer overflow

;------------------ device initialization -----------------------------
Reset:

 ldi tempa, RAMEND ; Set up stack
 out SPL, tempa

; Port setup
 ldi tempa, 0xFF
 out DDRB, tempa ; PORTB0:7 for segs a-g and DP
 out PORTB, tempa
 ldi tempa, 0b00011111
 out DDRD, tempa ; PORTD0:4 for 5 display anodes
 out PORTD, tempa ; PORTD5 is set as T1 input below

; Set up TIMER0 for system tick
 ldi tempa, TIMER0_START
 out TCNT0, tempa
 ldi tempa, (1<<CS02)|(0<<CS01)|(0<<CS00)
 out TCCR0, tempa ; Start with 256x prescaler

;------------------ main program --------------------------------------
Main:
 ldi count_tick, COUNT_IVL ; Counter for freq counter
 ldi dig_index, MIN_DIGIT ; Counter for digit to display

; Set up Timer1 as 24-bit frequency counter
 ldi timer1_msb, 0 ; Clear high 8 bits of freq counter
 out TCNT1H, timer1_msb ; Clear Timer1
 out TCNT1L, timer1_msb
 ldi tempa, (1<<TOIE1) ; Enable overflow interrupt
 out TIMSK, tempa
 ldi tempa, (1<<CS12)|(1<<CS11)|(1<<CS10)
 out TCCR1B, tempa ; T1 pin as clock, rising edge
 sei ; Global interrupt enable

Main_Loop:

 rcall Wait_for_Tick ; Wait for system tick

; Store frequency counter value and convert to decimal digits after
; COUNT_IVL ticks have passed.
 dec count_tick ; Decr tick counter
 brne Count_Done ; Check if count interval has passed
 in count_L, TCNT1L ; Store lower 16 bits of counter
 in count_M, TCNT1H
 cli ; Suspend interrupt
 mov count_H, timer1_msb ; Store upper 8 bits of counter
 ldi tempa, 0 ; Reset 24-bit counter to zero
 out TCNT1H, tempa
 out TCNT1L, tempa
 ldi timer1_msb, 0
 sei ; Restore interrupt

; Multiply count by 2 to compensate for 0.5 sec capture interval
; Drop these three lines if a one sec capture interval is used.
 lsl count_L
 rol count_M
 rol count_H

 rcall Convert_Count ; Calculate digits for display
 ldi dig_index, MIN_DIGIT ; Reset display digit counter

; ** Insert freq offset addition or subtraction code here if needed **

 ldi count_tick, COUNT_IVL ; Reload tick counter
Count_Done:

; Display frequency on multiplexed 7-segment displays
 rcall Disp_7seg ; Display freq value

 rjmp Main_Loop

;------------------ interrupt service routines ------------------------
Timer1_OVF:
 inc timer1_msb ; Incr upper 8 bits if Timer 1 overflow
 reti

;------------------ subroutines ---------------------------------------
Wait_for_Tick:
 in tempa, TIFR ; Check overflow flag for TIMER0
 sbrs tempa, TOV0
 rjmp Wait_for_Tick
 ldi tempa, TIMER0_START ; Load counter start value
 out TCNT0, tempa
 ori tempa, (1<<TOV0) ; Clear flag by writing 1 to it
 out TIFR, tempa
 ret

;--
; Successively divide 24-bit frequency count by powers of ten 10^n to
; get digits for display. Digits are stored in freq_digit_n, n=7,...,0
; as binary values.
; Due to divide-by-ten prescaler, ones digit is actually tens digit of
; external signal, and so on.
;
Convert_Count:
 Calc_Digit freq_digit_7, 0x98, 0x96, 0x80 ; Ten millions digit
 Calc_Digit freq_digit_6, 0x0F, 0x42, 0x40 ; Millions digit
 Calc_Digit freq_digit_5, 0x01, 0x86, 0xA0 ; Hundred thousands digit
 Calc_Digit freq_digit_4, 0x00, 0x27, 0x10 ; Tens of thousands digit
 Calc_Digit freq_digit_3, 0x00, 0x03, 0xE8 ; Thousands digit
 Calc_Digit freq_digit_2, 0x00, 0x00, 0x64 ; Hundreds digit
 Calc_Digit freq_digit_1, 0x00, 0x00, 0x0A ; Tens digit
 mov freq_digit_0, remain_L ; Ones digit
 ret

;--
; Display frequency digits on multiplexed 7-segment displays.
; The register dig_index determines which digit is displayed and
; is assumed to be between MIN_DIGIT and MAX_DIGIT, with 0 the ones
; digit. Rotates through digits on successive calls.
;
; This version is for display of five digits. Uses lowest five bits
; of PORTD for anode output (display unit selection) and PORTB
; for segment output.
;
Disp_7seg:

; Set active anode line low, all others high
 ldi tempa, 1 ; Calculate 1<<(dig_index - MIN_DIGIT)
 mov tempb, dig_index
 subi tempb, MIN_DIGIT
 tst tempb

 breq PC+4
 lsl tempa
 dec tempb
 rjmp PC-4
 com tempa ; Invert bits for output
 out PORTD, tempa ; Set active anode line low

; Get segment codes for digit and set appropriate bits low
 ldi ZL, LOW(DIG_ADDR) ; Get digit value from register
 ldi ZH, HIGH(DIG_ADDR)
 ldi tempb, 0
 add ZL, dig_index
 adc ZH, tempb
 ld tempa, Z ; tempa now contains digit value
; Get display codes
 ldi ZL, LOW(2*Seg_Code_Table) ; Get segment display codes
 ldi ZH, HIGH(2*Seg_Code_Table) ; from table in prgm memory
 add ZL, tempa ; Add offset to base address
 adc ZH, tempb ;
 lpm tempa, Z ; tempa now contains PORTB code
; Set decimal point bit if digit index is 2 or 5
 ldi tempb, (1<<7)
 cpi dig_index, 2
 brne PC+2
 add tempa, tempb ; Set bit 7 for DP on
 cpi dig_index, 5
 brne PC+2
 add tempa, tempb ; Set bit 7 for DP on
; Invert bits and output
 com tempa
 out PORTB, tempa

; Set counter to next digit to be displayed with wrap-around
 inc dig_index
 cpi dig_index, MAX_DIGIT + 1
 brne PC+2
 ldi dig_index, MIN_DIGIT

 ret

;------------------ rom constants and tables --------------------------
Seg_Code_Table:
; Seven-segment display code table for digits 0 to 9.
; Each line contains codes for port used for segment control.
; A one bit means segment is on. Values may have to be inverted
; prior to placing in port output depending on hardware.
; D D
; Pgfedcba Pgfedcba
.db 0b00111111, 0b00000110 ; 0, 1
.db 0b01011011, 0b01001111 ; 2, 3
.db 0b01100110, 0b01101101 ; 4, 5
.db 0b01111101, 0b00000111 ; 6, 7
.db 0b01111111, 0b01101111 ; 8, 9

;------------------ eeprom --

